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A STUDY OF FLYING-BOAT

643

TAKX-OFF

SUMMARY

_-

——

It is shown that the iormal resistancecurve for a.
flying %oat may Ye approximated_bytwo straightlines.
The eq~iiqns for take-offdistanceand time,derived”fr.om
this approximation,are applied to a seriesof flying
boats and the resultingfactoisare plott.eciin nondimen-
sional form in a series of charts. Take-offperformance-s””
from the charts are shown to he in good agreementwith
step-by-”stepintegrations. Some applicationsof the
charts to,the EOlution of general design problems a~~ in-
cludes. ..._

z,
INTRODUCTION ..___

The calculationOf take-offrun and time for a flying
boat is not especiallydifficult%ut it is a teaiousproc-
ess. The usual methoa iS to calculatethrust and total
resistancecurves against speed and take the differenceas ““ -
net accelerating force from which the instantaneous aCCel- ,>
era%ion is k-norm. The relations%etween velocity,accel-
eration, space, and time enable curves to %e so dratinthat
the area enclosedbet~eon desiredlimits i.sproportional
to distance or time. Details of the method are given in
references1 ana 2.

.,

.

Oring to the nature of these calculationsmost engi-
neers avoid the ilrudgoryof repeat$ng tho process nny more
than is absolutelynecessary. Consoq,uently,the gone-rtil
knovledgc concerningthe relati~oimport~ce of the activo
vs,riablosis very lim”ited,and.it would prohahly remain so
for an indefiniteperiod were it not possible to o%tain a
satisfactoryapproximationthat iS available for a s~ton=
atic study of flying-losttake-off, This note is concernea
with the developmentof approximationformulas,their ap-
plication to a systematicseries of fictitiousflying boats,
and the conclusionsthat may be dram from a stuay of these
results.

.
—. .-
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APPROXIMATEXQUATIOliS)?ORTAKE-OFFRUN AND TIME

Typical curves of resistanceand’thrust,taken from
figure 13~~of reference2, are gi~v~nh figure 1, In ,gen-
eral, the resistancecurve‘mayhe approximatedby two
straightlines intersectingat-hum~ speed,as shown by the
broken lines on figure 1.. The take-offmay thereforebe
investigatedin two stages: the first representedby the
dist~e and time required to attain hump speedwith a
linear variationin thrust and resistance,and the second
stage representingthe distanceand time to accelerate
from hump speedctotake-off,ri-ith,alinear variationin
acceleratingforce that differs from that acting during ‘
tho first stage. It is a matter of-convenienceto reduce
the forces to unit forces (by ~ividing by the gross weight)
and the s e?d to a speed ratio (by dividingby take-off
spoad 7VG ● This gives the simplifiedforce diagram shown
@n figure 2.

The linear variationof thrustwith speed sho”wnon
figure 2 may 50 representedby the equation

where T is the thrust at any speed V ●

T09 the static thrust/

‘G, the take-offor get-aw&r speed‘

7, the gross,weighi!”

kl, a constantdeterminedby the relation

kl = (T. - !Fr)/To

T~, the thrustat- V = ‘G ]

(1)

Below hu~p speed the resistanceincreaseslinearly
with speed, or

RI-— =’
w k? (;”) ‘ ““. ““ (2)

RH
If –W- is the resist~mzeat the hump, then

,

.
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RE 1
ka=–– — (3)

! R v~’ ‘“ -
()—, ‘%VGd

where v= is the speed at the hump. “..
The acceleratingforce in the first stage is

This force producesan acceleration

The distancerequired.to acceleratefrom V = O
VH is given by the integral

‘E

s ‘“ ~=
/ al“..
o

or %y substitutionof equation (5) for al
.

0

v (IV—- —
v~ v~

—

(4)

(5)

tov=
.—

. .

(6)

-.

(i)
,-

On ir.tegrationthis gives:
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The time requiredto acceleratefrom V = O to
is ~iven %y the integral - – . v ‘ ‘3

(9)

●

o

or by substitution

~g =

of.the value of al from equation (5)

?E dV . .-

/

~ ...
— (lo)

VfJ .
32 .

(
‘0 + ka

)
v

o T kl y < ;.<:
,]J.:.#’- Q-’++’”-’- ‘ ;<n integrationthisi,gives

[’

$gtl 1–———- log –— .—
~G- =

( 1(11)T ) To
(

T!O
lcl–W~-f-ka kl -w-+-ka)

~
-F-

in the second stage,a%ove the hump, the variationof
thrust T=/W will be given by equation (1). The resist-
ance will le given by

(12)

where Ro/’iTis a fictitiouszero-speedresistanceobtained
by extrapolationof the resistancepurvo hack ti-”zo?rospeed.
The value of Ro/17 may be.obtained,directly’from the hump
resistance R~/w and the final or take-offresistance
RF/17. From similartriangles

v~
R. R= RE RF

( )

( )

~G
Y=–F+–W–-Y

-—— (13)
v~

l.-—vG
\

The constant k~ is gi~en by k~ = ‘(ROe RF)/Eo.

The acceleratingforce pa in ‘thesecond stage is

—

.
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)?2 ‘Ta ‘IL= To --’R& “’T
( )(

RV
—=—. _

““7=–T--W ww”- )kl +-k+ ~ (14)

and the corresponding.accelera.tionis . .

‘:.=,;[(%+) -( ’1%’3 %;] (15)&L2= ‘—

The &i-stancerequired tO acceleratefrom hump speed
to tcke-off sgeed is given by the integral .-

-—

or by

which

~~a
q’

-v=
—

substitutionof the value of aa from equation (15)

gives

r

(,1-U )
--——

VG .
—— -

(
TO

kl~-k.+
)

t-

[

(+-%9+%’-+ - ,18,

log – 1(%”%-0=%-’3%%J
-J

The time required to acceleratefrom hump speed to
take-off speed is given by the integral ,-

1

..%

tan= = . (19)
az

VH
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.

.
substitution of the values of aa from equation (15) and
convertingto,ratioform gives

and on integration

(21)
These equationsare-lessfortiidablethan their

appearancewould indicate,and they are readilyapplied
to a systematicseries.as will be”shown later, Equations
(18) and (21.) become indeterminatewhen the accelerating
force is constant,and in this case it is necessary to use
supplementaryequations. When the acceleratingforce is—

constant S = ~~,
/ 2a hence

-a
Sa=zl= v————

2aa I?a
2g (-w-)onst

Introducingratios and
‘H/‘G and unity gi~os

takingthat part of

( ~Ha
1- TG)=——-—
F2

2 ()T/ cons+

(22)

Sa between

(23)

In a,similarmanner,;vhenthe acceleratingforce iS constant.
=Vt ;,

*2 “
hence ,

ta=~=
v

aa I?2 —
g ()Tr const

(24) ~ “
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Introducingratios and taking the time intervalbetween
VH/VG and unity gives

(25)

DEVELOPMENTOF TAKE-OFFCHARTS

Rquations (8,),(11), (18),and (21)have leen a~ylied
to a systematicseriee in -whicha wide range of values
were as.siEnedto the basic variables (To/w), (FE/W), and
(FF/W). l?heresults are given in condensedfor-mfor VH = .

0.40 v~ in tables I and II. Similar valueswere obtained
for, VH = 0,33 VG and VH = 0050 VG but these data ar”o
used only in the determinationof correctionfactors for

s VH~ aS will %e indicatedlater.

The expressions (gsllv~a) appearingin equation (8)
“ and (gtl/VG) appearingin equation (11) are nondimens-

ional distanceand.time integrals,respectively.““’These
may %e plotted as functionsof the spec~fiti‘staticthrust
(To/W) and the specificexcess thrust or accelerating
force at the hump (FE/W), as in figures 3 and 4, using
the data from table I. In a similarmanner, the distance
and tiae integralsfor the second stage (gsa/VGa) and
(gta/VG) may tieplotted as functionsof the specificex-
cess thrust at the hump (1’H/W)and the specificexcess.— --—

thrust at take-off (F~/W), as in figures5 and 6, using

\.

.

the dat~ from table 11. As a matter of convenience,t~e
normallyused portions of figures5 and 6 have been re-
plottod to an enlarged sca”lein figures ~ and 8.

—
I’i~ur~s% to ~ inclusivea~~ based on VH = 0,40 VGS

The correctionfactors for any other value of VH have ‘--
been determinedand arc plotted on figures9 and 10.

Tho total distancerun during take-offis ‘S = S1 +
.-. .-.

Sa or, in generalform,
.. .—

.—

(26)

.
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where k~l and k6a are the correctionfactorsfor actu-
al humy-speedratio given on figu”res9 and 10.

The total time requiredfor the take-offis t = tl +
t= or, in general form,

gt tT) yt——-
v~

. kt ––> ()+kta ,<1 \vG G
(27)

r~here % ~ end kta are the correctionfactorsfor ac-
tual hump-speedratio given on figure 9.

It is of interestto note that the factors k~l m d
kt2 aro linear with the value of VH. Tho factor k~l
varies as the square of the hump-syeedratio,hi tho fac-
tor %a obviouslydepends on the slopo of the curvo of
acceleratingforce between the speeds VH and VG.

ACCURACY OF CHARTS IN ?JAKE-OFl?ESTIMATION

Table.III containscomplete data used in applyingthe
curves of $igures 3 to 10 to the approximationof take-
off distanceand time f~r four flying boats for which
step-by-stepintegrationswere availalle, The maximun
differencebetween the two methods is less than 3 percent,
which is probablywithin the accuracy to which thrustand
resistanceare knotyh. It -tjherefor<appears that the
chart?rmay be safelyused in take-offestinat=-swhen t~e
resistancecurve can be representedby an approximationof
the type shown on figuro 1. This ~pprox:nationis intend-
ed to zivo the same avorago accelor”atingforce as t-he.ac-
tunl resist-rmcecurve in the second stage. This typo 0~-
appro:cinationiS valid as long as the acceleratingforce
does not approach zero over an apprjociableportion of tho
high-speedrange. ~~en the latterconditionexists with
the actual distancegre~.terthan, say, 5,000 f~-atand
take-.off,time Ionger...than60 second~,&he values will be
f-oundrather sensitiv~to slight changesin the final re-
sistance. Investigationof severalextremecases hns
shown that the error involvedin.the use of the chartsmay
run CG high aS 15 percent under conditions,however, that
are of little practicalinterest.

.

.*

1
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PRACTICALAPPLICA!!!IONOF TAKE-OFFCHAR”T~

It has been shown that the curves of figures 3 to lo,
inclusive, are sufficientlyaccuratefor the average takeo-
ff estimate: Their greatestvalue, however,lies in the ‘-
answer they provide to a number of questionsregardingthe
effect of form of resistancecurvo on take-offch-a-i-acter+

9

istics.
ing:

a)

b)

..
c)

d)

Among those questionsmay be listed the follon-1

.,
Proportionof the total distanceand time re-

quired,‘co’rec,chhump speed. .....
Comparativeeffects of a high and a l~w value
of hump speed. ..

..—_
Comparative effects of.low acceleratingforce-at
hump spcetland at take-off. .

--
Limits on acceleratingforce for specifiedtake-
off performance.

The answers to these questionsserve to indicatethe
general hull characteristicsrequiredto meet different
design cond.it”ions. ...._ -

.. DISTANCE~ND TIME TO ATTAIitHUMP SPE3D

It is a matter of considerableinterest,and occa-
sionallyof importance,to know what percen-tageof the
take-off distanceand tine are required to attain hump
speed, The rati~ desired are simP~Y .sl/s and t~/t,
and these ~Lay readily b~ obtained, frGm the distance-and
tine into.gralsin tables I and II. I’igures11 and 12 give
S1//s cmd %l/t in terms of the acceleratingforce at
tnko-o:f. The value of the static thrusthas%omparatively
‘asnail effect as indicatedby th~ threo curves on each/-’.,-

--

figuru. The value of the accelerating force at .thehump
like~isohas a very small offoct. The ratios are prac-
tically doternined%y the take-offacceleratingforce.
only. For an average flying boat the hump speed iS at-
tained after abo~t 10 percent of the {ogsl run re~iring
.approxinately20 percent of tho total toJ:6-5fftime.-. .- ..--— _ .
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EI?FEC?JOF LOCATIONOF HUMP SPIED
.

.
It seems. logical. to expect that the relativevalue of

t-hehump speed in terms of the gefi-awayspeed must have an
appreciableeffec,ton the.take-off, If the hump”speed is
low, the wing lift will also be JOW and thewater resist-=

L-- ante will tend to be high. If.thqhump speed is highJthe “
‘iv.imngswill be developingan appreciable-liftand the water .
resistancewill tend to be low, Since,“in general,load
can he carriedmore efficiently_bythe wings than by the
dynamic action on the hull, it follows that there i.ssome r
reason for favoringa high hump s>g~. -Kowe-ver,’this .of-
fect is not sufficientlygreat%o %c a determiningfactor.
Its influancemay be secondaryto .the.slopeof thrush
against speed. If the thrustdecr?aseswith speed, a low
hump speed means.morethrustavailablefor overcomingre-.
sistanceand, conversely,a high hump speedmeans less
thrust available. If the thrust~~w With Speed it
appears that a high h~mp speed is decidedlypreferable.

The.generalquestionOf the eff~ct of hump speed on
take-offinvolvestoo many factorsfor a simpleanswer.
It is possi%le,however, to obtain some indicationof the
type of variationto be expected. Values of the take-
off integralshave been determined.fora systematicseries
of values of--staticthrust To/w, acceleratingforce at
the hump %@, ant final acceleratingforce at take-off
F#. The final acceleratingforce appears to be t-hemost
importantvariable,very little variationbeing obtained
by changes in To/V and I?=/w. The curves of relative
dist.a~ceand time given OYI figures .13and 14 for ~ = 0-25

-b’=
and = 0.04 are “tjpicalof the o~t~re>gries, ;hese ?----

. . -f
““-indicate that under the assumed conditionsthe relative

locationof the hump speed is not highly importantbut-.
that the getioraltendencyis to show slightlymoro favora-
ble results for high hump speeds.

SLOPE OF ACCELERATINGFORCE AT”2LANING SPEEDS

Some Of—thehull cha~acteristicsthat toad $U give
low hpmp resistance,for ~xample,a-shallowetep, may have
an adverse effect on planing speeds..It is often possible
by making such changes to alter t-hoshape of the planing

.

.

.

.
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. .
\= resistancecurve very materially,with a correspondingef-

fect on the curve of acceleratingforce at planing speeds.
The questionis sifi~lywhat type of accelerat~ngforce
curve is,mostdesirable. An ~PProach to the answer to - .
this quection,- is obtainedby comparingthe take-offinte-
grals for selecteiiyalues of FH/T, and FF/W, first in
a given order and then’inverted. I’orexample,using data

fr~n table II, whe~- ~ .’0,02 ad ~ =,0.04, the value” ‘--
of gsa’;v;a is 13.84, and tho value of gt2/v~ is 20,’79.

,’ If th~.acceleratingforce-valuesare interchangedto
. FE F;.- = b.04”.acrid‘y = 0.02, the value ol?

-.
w @z/VG= iS
15.27, .s.nd,the value of gt/v~ is 20.79. The time into-

.’ gral is unchangedbe-causethe average acceleratingforce
1. romr,insconstant”,but “thedistanceintegralis always in?

creasedwhen,the acceleratingforce at the hump is in-
creased,atthe exyense of,the acceleratingforce at take- .
Off. . .-

.,

.

.

The comparisonoutlin~dabove has been made for a se- .
ries of force %-aluesand the,resultsare given An figure
15, which indicatesthe desirabilityof securinglow r~-
sistanceat high speedswhenevar take-off~GQ is a __
consideration.

ACCELEIIATIIJGFORCFJREQTJIREDTO MEET

SPEC13’IEDZUiFORMANCE

One of the normal r~quiroment~in flying-boatperform-
,ancois that the take-offbe accomplishedin a specified
tine. Sinco the get-away speed iS known, the required
value of gt/v~ i.sknon-n,and the values of the acceler-
ating forces F= and FF may readilyle determinedby the
use of the syecialplotting oa figure 16. The cent-ourson
this figure are prepared by asstiming-a series of values of
To/!? and, ~/V, thus detertiinin~-thevalue of g’t~/~Gr
Thus, for any assuned vnlue of gt/VG, the value of
g+ajv~ is known e,ndthe valuo of FF/T? may be determined
for the corresponding FH/W on figure 8. .—

AS shown by tho dotted curves on figure 16, variation
in static thrust has ver~ little effect on accelerating
forces required.
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!l!hcuse of figure 16 may be illustratedby a numori-
oal example. If the take-offtime is not to exceed 60
seconds,with a get-awayspeed of.120 feet per second,the
time integralmust not exceed

gt . 32.2 ~ ~ 16,1
v; 120 r .-

Tliisintegralis satisfied%y the following combinat-
ions:

r~/17 0,01 0,02 0,04 0.047 0,08 0,16

Tr/Tl 0.166 0.106 0,055 0.047 0.022 0.004

An estimateof the probable value of Fp/T determinesthe
correspondingrequiredvalue of .F@T. Since the thrust
curve may be assumedas known, th~ maximumacceptancere-
sistanceis also known by differences.

ThG
lows:

1.

‘ 2.

3,

4.

CONCLUSIONS

conclusionsindicatedby this study are as fol-’

The resistancecurve for a flying boat may, in
general,ho satisfactorilyapproximatedby
two straightlines. :

A graphicalsolutionof the equationsbased on
the linQar approxlmati~n gives satisfactory
,agreement wit-h stop-by-step integration.

‘The relative distance and time required to reach
hump speed depend largely on the value of the
accele~*atiing forco at high speeds;the effect
of variationin staticthrust is small and the
effect of variationin‘acceleratingf%rce at
the hump is negligible.

Neglectingany effectsdue to variationi,nthrust
with speed, the effect,ofa reasonablevcria-
tion.in the. actual hum@ speed is negligible
except for very heavily loaded seaplanes,

*

●
☛

—

..—

.. —

.

.
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,

.

I

5.

6.

Where take-off&istmce is a consideration,it
may be advisableto.accept a high hump resist-
ance in order to obtain low planing resista-
nce. The take-offtime will depend only on
the average acceleratingforce.

The take-offcharts may be employedto determine
the acceleratingforces requiredto meet spec-
ified take-offperformance.

Bureau of Aeronautics.
Navy Department, ”

Washington, D. C., Jnnuary15, 1938.
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TABLE I

Distancoand Time Integralsbetween V. and v~
—.

Excess
thrust
at
‘hump--—

‘E
T

-—
0.005
,01
,02
.04
.08

0;005
.01
,02
,04
.08
.16

—.—
Cl,Q05
*O1
,0’2
,04 “
,08
.16
.24

-———

Distance
integral

i$l
~~

.—
2~78
2*17
1.63
1.17
.79———

2;28
1,81
1*38
1*O1
.70
.46

——
lq95
1,5?
1,21
,90
,64
.43
● 33

-———

Time
integral

-——— —
gt~—.—
v~

-_.-——
9*38
7,74
6.20
4.81
3.59

7,57
6~31
5912
4,02
3.05
2.23

——-
6.39 -
5~36
4.39
Z*49
2.68
1.98
1.63

40 TG

Static
thrust

To

T

0.30

.—-

Excess
thrust
at
hump—

‘H
Y

0;005
,01
,02
,04
*O8
.16
.24

0.005
001
002
~04
g08
.16
.24

<-

—

IIstanceTime
integralinte-

gral.-—
gsl gtl
<

VG

1F?2
1.39
1,09
,82
.58
.40
.31

1.39
1.14
,91
.69
.51
.35
.28

——

5,55
4,69
3,87
3,11
2,40
1.80
1.49

——
4,44
3,78
3.15
2*56
2~ol
1.53
1.28
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TABIIE11

Distance and Timo Integralsbetween Hump
and Get-A?aySpeeds

VH = 0.40,VG
——

IThruzt
Excess] at

ak1 gct-
hump .away

-—— _____
‘H

I

‘F--
w F

0.01 0,01
,02
●Q4.
;08
.16
● 24

0.02

0.04

0.01
B02
~oh
~08
.16
.24

..—
0;01
,02
.04
,08
.16

~istanco
integral

———___

42,09
2’7,68
17,55
10:74
6.39
4.66

30$54
21,of)
13984
8*77
5.3?
3F97

—.
21.27
15,27’
10.50
6.92
4.39
3*31

Time
integral

60.00
41.59
27f?3
17,82
11.09
8.29

41.59
30.00
20:79
13,86
8.91
6.78

——
27’.73
20:79
15~oo
10.40
6.93
5.38

—.

I 0.08

I

0.16

\

..
0.24

/

4 —

Phrust
at
get-
away

‘F
T

0,01
,02
004
,08
.16
.24

0;01
,02
*04
*O8
.16
.24

0.O1
~02
.04
.08
.16
.24

I
)istance
integral

14:21
10.64
7.64
5,25
3.46
2.66

~i~e
inte-
gral
.———
gt~
v~

.—
17,82
13,86
10*4O
7.50
5.20
4.12

-<

9.13 Ilqo9
‘7,1O 8*91
5,32 6,93
3,82 5,20
2.62 3.75
2Y07 3~04

6:94 8;29
5*51 6*’78
4.22 5.38
3tll

I
4;12

2.19 3.04
1,75

I
2.50
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T!A,BLE111

Comparisonof Take-OffDistanceand Time Ohtaine&%y
Charts and by Step-by-StepCalculations-..- —

N.A.C,..4.model No.
Data from T.Ii.No.
.—— —

w n).
To 11.
TH lb.
R= n).
F= =’T~ - RH lb.
Ty lb. v

Rm l-bv
F; = T’F- RF lb.

——
To/Y{
r=/lT ..
FF/W .,.

Hump spee~ VE ft./see. : “ -
Get-away speed TG ft./see. “.

. ‘H/TG ...

‘ 7~S1/~Gs) fOr VE = 0.40 v~
k from figure 991
(@v~’ )
(gs2/v~) for ~H = 0.4-0 V~
k from figure 10

(~s=/VGz)
gs/vG2
s from sharts
s from calculationin reference

(gt, /v~) for V= = 0.40 VG
%1 from fi&nzre9
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